
DOI: 10.1007/s10910-006-9104-y
Journal of Mathematical Chemistry, Vol. 42, No. 3, October 2007 (© 2006)

Overlap integrals between irregular solid harmonics
and STOs via the Fourier transform methods
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In this paper, a unified analytical and numerical treatment of overlap integrals
between Slater type orbitals (STOs) and irregular Solid Harmonics (ISH) with different
screening parameters is presented via the Fourier transform method. Fourier transform
of STOs is probably the simplest to express of overlap integrals. Consequently, it is
relatively easy to express the Fourier integral representations of the overlap integrals
as finite sums and infinite series of STOs, ISHs, Gegenbauer, and Gaunt coefficients.
The another mathematical tools except for Fourier transform have used partial-frac-
tion decomposition and Taylor expansions of rational functions. Our approach leads
to considerable simplification of the derivation of the previously known analytical rep-
resentations for the overlap integrals between STOs and ISHs with different screening
parameters. These overlap integrals have also been calculated for extremely large quan-
tum numbers using Gegenbauer, Clebsch-Gordan and Binomial coefficients. The accu-
racy of the numerical results is quite high for the quantum numbers of Slater functions,
irregular solid harmonic functions and for arbitrary values of internuclear distances and
screening parameters of atomic orbitals.

KEY WORDS: overlap integrals, slater type orbitals, irregular solid harmonics,
gegenbauer polynomials

1. Introduction

Electronic structure calculations for molecules are built from LCAO-MO
approach. In that approach the choice of basis functions for the reliability basis
set for the electronic distribution is of utmost importance. It is well known that a
good atomic orbital basis satisfy the cusp condition and exponential decay at large
distances [1,2]. It is not surprising that exponentially decreasing orbitals (ETOs)
could be used successfully as basis functions in large arguments. Among the ETOs,
the Slater Type Orbitals (STOs) have assumed a dominating position as basis func-
tions in molecular multi-center integrals calculations. In addition to, STOs have
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the simplest analytical structure of all ETOs. Other ETOs, for instance, Bessel type
or Gaussian type orbitals, can be expressed quite easily as linear combinations of
STOs [3]. This declines that multicenter molecular integrals over other ETOs can
be expressed in terms of the basic multicenter molecular integrals over STOs.
Consequently, STOs have been used quite frequently and successfully as basis
functions in atomic Hartree–Fock calculations.

Historically, difficulties with molecular integrals appeared at the very begin-
ning of quantum chemistry with the study of hydrogen molecule by Heitler
and London [4]. Sugiura [5] was able to solve exactly their approximated
1s–1s exchange integral by using elliptical coordinates. Eventually, a wide range
of two-center molecular integrals were examined by many workers [6]. However,
the more general case of integrals over four orbitals, each centered on a different
nucleus, proved to be virtually intractable. Yet, substantial progress was recorded
by Collidge [7] when he introduced a new method by expanding all orbitals in
an infinite series of spherical harmonics about a common center (single-center
expansion). Löwdin [8] pursued these methods using the α-function notation for
the radial functions associated with the spherical harmonics and wrote sugges-
tive matrix arrays for polynomial coefficients. Barnett and Coulson [9] found
some success using combinations of Bessel functions (zeta function) in their sin-
gle-center expansions. Harris and Michels [10] used recursion relations for α-
functions, but numerical instabilities sometimes appeared. Transform methods
and expansions in orthogonal functions have been applied to this problem and
have produced some notable results [11]. More recent references can be found in
Ref. [12].

Spherical harmonics play important roles in many areas of theoretical,
applied and chemical physics (calculations of molecular interactions, molecular
integrals, the analysis of the molecular electronic density, etc.). Some of these
problems are related to calculation of the electrostatic interaction between two
different charge distributions. This interaction takes a simple form in terms of
the multipolar moments of distributions in line-up coordinate systems [13].

One of the most important methods for the evaluation of the complicated
multi-center integrals has been the use Fourier transform. This relationship for
two-center molecular integrals, which was first noted by Prosser and Blanchard
[14], has subsequently been used quite frequently for the evaluation of overlap
integrals [15]. Using the technique of the Fourier transform and the theory of
residues, Todd et al. [16] presented an overlap formula. Within the Fourier trans-
form method for the evaluation of STOs, multi-center integrals are transformed
into inverse Fourier integrals. In this method, it is not the analytical simplicity of
the ETOs used, but rather the analytical simplicity of its Fourier transform of all
the normally used ETOs, BTOs have the simplest Fourier transform [17]. How-
ever, the inefficiency of BTOs arises in the evaluation of multi-center molecular
integrals for higher quantum numbers, nearly equal to the screening parameters
and higher and lower internuclear distances [18]. It is well known that there is no
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satisfactory computational method for the use of the Fourier transform convo-
lution theorem over STOs in quantum chemistry for a higher range of quantum
numbers and geometries, and for all the values of the screening parameters.

In numerous papers it was demonstrated that the STOs have the simplest
analytical structure of the ETOs. Therefore, in this paper we prefer to use Fourier
transforms of STOs and ISHs. The Fourier transforms of such as STOs and ISHs
are of exceptional simplicity. Consequently, these functions may be considered to
be some fundamental entities in momentum space. Because of simplicity of the
Fourier transforms of STOs and ISHs it is an obvious idea to evaluate multicen-
ter molecular integrals over STOs via the Fourier transform method. In section 3,
we shall discuss the relevant properties the Fourier transforms of STOs and ISHs.
Particular emphasis will be given to relationship between STOs, ISHs and analyze
limit case. In the following sections, we shall develop all mathematical tolls which
we need for the derivation of expressions for the overlap integrals between STOs
and ISHs. These expressions contain product Gegenbauer, Gaunt coefficients, and
linear combinations of STOs. Finally, we would like to emphasise that this paper
is presented numerical results of formulas.

2. Definition and basic properties

We will use real STOs with integer values of principal quantum numbers.
The normalized STOs designated by χ are given by

χm
n,l (α, r) = (2α)n+1/2

√
(2n)! rn−1 exp (−αr) Y m

l (θφ) , (1)

where α is the scaling parameter, the functions Y m
l (θ, φ) are real or complex

spherical harmonics [19]

Y m
l (θ, φ) = P |m|

l (cos θ) �m(φ). (2)

Here P |m|
l are normalized associated Legendre functions and for real spher-

ical harmonics

�m(φ) = 1√
π

(
1 + δm,0

)
{

cos (mφ) for m ≥ 0,

sin (|m|φ) for m < 0 (3)

for complex spherical harmonics

�m(φ) = 1√
2π

eimφ
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For the regular and irregular solid harmonics we use the symbols, respectively,

Sm
l (r) = rlY m

l (θ, φ), (4)

£m
l (r) = r−l−1 Y m

l (θ, φ). (5)

For the integral of the product of three spherical harmonics over the sur-
face of the unit sphere, so-called Gaunt coefficient [17-(a)], we write

〈l3m3| l2m2 |l1m1〉 =
∫ [

Y m3
l3

(�)
]∗

Y m2
l2

(�) Y m1
l1

(�) d�. (6)

These Gaunt coefficients linearize the product of two spherical harmonics,
[
Y m1

l1
(�)

]∗
Y m2

l2
(�) =

∑lmax

l=lmin

(2) 〈l2m2|l1m1 |lm2 − m1〉 Y m2−m1
l (�) . (7)

The symbol
∑(2) indicates that the summation proceeds in steps of 2. The sum-

mation limits in equation (7) determined by the selection rules satisfied by the
Gaunt coefficients.

In this paper, we shall use the symmetric version of the Fourier transforma-
tion a given function f (r) and its Fourier transform g(p) are connected by the
relationships

g(p) = (2π)−3/2
∫

e−ip.r f (r)d3r

f (r) = (2π)−3/2
∫

eir.pg(p)d3 p.

(8)

The Fourier transform is only defined for functions that are element of
L1

(
R3

)
.

The main advantage of the representation of two-center integrals as inverse
Fourier integrals according to two-center integrals is that a separation of integra-
tion variables can be achieved quite easily if f (r) and its Fourier transform g(p)

are irreducible spherical tensors. To show this we only have to insert the well-
known Rayleigh expansion of a plane wave in terms of spherical Bessel functions
and spherical harmonics

e±ix.y = 4π
∑∞

l=0

∑l

m=−l
(±i)l jl (xy)

(
Y m

l

(x
x

))∗
Y m

l

(
y
y

)
(9)

into the integrals in two-center molecular integrals, where

jl (xy) =
(

π

2xy

)1/2

Jl+1/2 (xy) . (10)
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3. Fourier transforms of irregular solid harmonics and STOs

In this section, we want to analyze how to simplicity of the convolution
formulas can be related to the mathematical properties of STOs and ISHs. With
the help of Rayleigh wave expansion we obtain for the Fourier transform of
STOs [3-(a)]

U m
nl (β, p) = (2π)−3/2

∫
e−ip.rχm

nl (β, r) d3r

= 2n+l+1βn+1/2

Fl (n)
√

π Fn (2n)

(
β2 + p2

)−(n+l+2)/2

×Cl + 1
n − l

(
β√

β2 + p2

)
Sm

l (−ip)

= 22n+1β2n−l+1/2

Fl (n)
√

π Fn (2n)
Sm

l (−ip)
∑E

(
n−l

2

)

r=0
(−1)r ar (l + 1 , n − l)

(2β)2r

∑∞
s=0

Fs (n − r + s)

(
α2 − β2

)s

(
α2 + p2

)n−r+s+1
, (11)

where Fl (n) are the binomial coefficients, and Cα
n (x) is the Gegenbauer polyno-

mial defined by the following relation [20];

Cα
n (x) =

∑E(n/2)

s=0
(−1)s as (α, n) (2x)n−2s, (12)

where

E(n/2) = n

2
− 1 − (−1)n

4

and

am(α, n) = Fα−1 (α − 1 + n − m) Fm (n − m) .

If the screening parameters α and β differ only slightly, all expressions of
the overlap integrals over the two basis functions with different screening param-
eters that are based upon the partial-fraction decomposition equation 5.11 of
Ref. [17-(a)] become numerically unstable. As an alternative from the Fourier
transform of STOs, we has to derive the another expression;



342 E. Öztekin and S. Özcan / Overlap integrals between irregular solid harmonics and STOs

U m
nl (α, p) =

(
2
π

)1/2

Sm
l (−ip)

∑n−l

s=smin
(−1)n−l−s 2n+2l+2s (n − 2l)!

× Fs (n − l) Fn−2l (l + s)

Fs−n−l (2s − n − l)

(
α

β

)2s+l+1 ∑∞
r=0

(n + s + 1)r

r !

×
[

1 −
(

α

β

)2
]r

β2(s+r)+l−1

(
β2 + p2

)s+r+l+1
, (13)

where smin = n−l−((−1)n−l−1)/2
2 and (a)n = 
 (a + n)

/

 (a), for n ∈ N with (a)0 =

1 is a Pochhammer symbol.
If we set n = l = 0 and perform the limit α → 0 in equations (11) and (13),

after some algebra we find

p−2 =
∑∞

v=0
β2v

/(
β2 + p2

)v+1
. (14)

The irregular solid harmonics is written as following forms by using limited
values of STOs

£m
l (r) = limα→0

{√
(2n)!

2n+1/2
α−n−1/2χm

nl (α, r)
∣∣∣∣
n=−l

}
. (15)

The relationship to define Fourier transform of an irregular solid harmonics
is given by

£m
l (p) = (2π)−3/2

∫
e−ip.r£m

l (r)d3r. (16)

If we perform the angular integration in the above Fourier integrals using
the well known Rayleigh expansion of a plane wave and orthogonality of spher-
ical harmonics, we find that the resulting radial integrals involving spherical
Bessel functions.

£m
l (p) =

(
2
π

)1/2
(−i)l Y m

l

(
θp, φp

) ∫ ∞

r=0

jl (pr)

rl−1
dr. (17)

The remaining radial integral can be computed quite easily. We use [20]

∫ ∞

0

Jv (ax)

xv−q
dx =



(

q
2 + 1

2

)

2v−qaq−v+1

(
v − q

2 + 1
2

) . (18)

With the help of radial integral in equation (18), we obtain for the Fourier
transform of ISHs in terms of regular solid harmonics by following form

£m
l (p) =

√
2
/
π

(2l − 1)!!
Sm

l (−ip)

p2
. (19)
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Alternatively, one might also use the following representation of the Fourier
transform of an ISHs are considered to Fourier transform of an ISHs by using
equation (11)

£m
l (p) = limα→0

{ √
(2n)!

2n+1/2
α−n−1/2Um

nl (α, p)

∣∣∣∣
n=−l

}

=
(

2
π

)1/2
2l l!Sm

l (−ip) limα→0

{
(n − l)!

(
α2 + p2

)−(n+l+2)/2
Cl+1

n−l

(
α2

√
α2 + p2

)∣∣∣∣∣
n=−l

}
. (20)

For the calculated of limited values in equation (20), we must have spe-
cial values of the Gegenbauer polynomials. For this aim, we can written the
Gegenbauer polynomials in terms of hypergeometric functions [20]

Cλ
n (t) = Fn (2λ + n − 1)2 F1

(
2λ + n, −n; λ + 1

2
; 1 − t

2

)
. (21)

If we take into consideration that the relationship

(n − l)!Cl+1
n−l (0)

∣∣∣
n=−l

= (n + l + 1)!
(2l + 1)! 2 F1

(
n + l + 2, l − n; l + 3

2
; 1

2

)∣∣∣∣
n=−l

.

= 1
( 2 l ) ! . (22)

Holds, we again obtain result given by equation (19) for Fourier transform
of an ISHs from equations. (20)–(22).

4. Overlap integrals between irregular solid harmonics and STOs with different
screening parameters

In this section, we want to consider the overlap integrals between STOs and
ISHs with exponential parameters α and β and the internuclear separation vec-
tors R for which we write

Zn2l2m2
l1m1

(α, β; R) =
∫ [

£m1
l1

(αr)
]∗

χ
m2
n2l2

(β, r − R) d3r. (23)

This relationship, which holds in the sense of distributions, can be used to
derive representations inverse Fourier transform [17].

Zn2l2m2
l1m1

(α, β; R) =
∫

e−iR.p
[
£m1

l1
(αp)

]∗
U m2

n2l2
(β, p) d3 p. (24)

Finally, we are give explicit integral representation for overlap integrals over
an ISHs and STOs with different screening parameters, which will be treated in
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this paper. Together with equations (11), (19), and couple of spherical harmon-
ics according to equation (7), and after some manipulations we finally arrived at
following integral representation for overlap integrals between STOs and ISHs

Zn2l2m2
l1m1

(α, β; R) = i l1−l2 22n2+3/2β2n2−l2+1/2

αl1+1 (2l1 − 1)!!π Fl2 (n2)
√

Fn2 (2n2)

×
∑E

(
n2−l2

2

)

r=0 (−1)r ar (l2 + 1, n2 − l2)

(2β)2r

∑lmax

l=lmin

(2) 〈l2m2 |l1m1| lm2 − m1〉

×
∫

e−iR.p pl1+l2−l Sm2−m1
l (p)

p2
(
β2 + p2

)n2−r+1
d3 p. (25)

Equation (25) is the general expressions for overlap integrals between STOs
and ISHs with different screening parameters via to Fourier transform method.
In this expression, l1 + l2 − l = 2L is the even integer number or zero. To eval-
uate of the representations of overlap integrals, we shall show how the series
expansions, which occur integral representations equation (25) can be expressed
in terms of simpler functions such as p2L and p−2

(
β2 + p2

)−n+r−1
using Taylor

expansions or partial-fraction decomposition. We use the relationship, which is a
special case of binomial theorem [17]

p2L = (−1)L β 2L
∑L

t = 0
(−1)t Ft (L)

(
β2 + p2

β2

)t

. (26)

Then, we start the following partial-fraction decomposition given by equa-
tions (4.2), (4.13), and (4.27) of Ref. [17-(a)]

p−2
(
β2 + p2

)−n−l−1 = β−2n−2l−4
[
β2/p2 −

∑n+l

ν=0

[
β2/

(
β2 + p2

)]ν+1
]

(27)

=
(
β2 + p2

)−n−l−2 ∑∞
ν=0

(
β2

β2 + p2

)v

(28)

=
(

β2

2
+ p2

)−n−l−2 ∑∞
ν=0 2 F1 (−ν, n + l + 1; n + l + 2; 2)

×(n + l + 2)v

v!

(
β2

β2 + 2p2

)v

. (29)

We may expect that these representations will allow a very efficient evalu-
ation of the overlap integrals between STOs and ISHs with different screening
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parameters. If we combine equations (25)–(27), we immediately find

Zn2l2m2
l1m1

(α, β; R) = 22n2+3/2βl1−3/2i l1−l2

αl1+1 (2l1 − 1)!!π Fl2 (n2)
√

Fn2 (2n2)

∑lmax

l=lmin

(2) 〈l2m2 |l1m1| lm2 − m1〉
∑E((n2−l2)/2)

r=0

∑L

t=0
(−1)L+r+t Ft (L) 2−2rβ−lar (l2 + 1, n2 − l2)

{∫
e−iR.p Sm2−m1

l (p)

p2
d3 p −

∑n2−r−t

ν=0
β2ν

∫
e−iR.p Sm2−m1

l (p)
(
β2 + p2

)ν+1
d3 p

}
. (30)

To evaluate first integral in equation (30), we use following expression and
Rayleigh wave expansion;

Y m
l (θ, φ)

∫ ∞

0
jl (pR) pldp =π

2
(2l − 1)!!£m

l (R) . (31)

In the following step, we shall present closed-form expressions for the sec-
ond integral in equation (30) which are derived very detailed in Appendix A.

Y m
l (θ, φ)

∫ ∞

0

pl+2 jl (pR)
(
β2 + p2

)k+1
dp = π

βl−2k−1/2

22k+3/2
∑k−l

q=1
gl

k−l,qχm
q+l,l (β, R) . (32)

If we insert equations (31) and (32) into the overlap integrals (30), we obtain

Zn2l2m2
l1m1

(α, β; R)= π (−1)l1 22n2+3/2βl1−3/2

(2l1 − 1)!!αl1+1 Fl2 (n2)
√

Fn2 (2n2)

∑lmax

l=lmin

(2) 〈l2m2 |l1m1| lm2−m1〉

×
∑E(n2−l2/2)

r=0

∑(l1+l2−l)/2

t=0
(−1)l+r+t ar (l2 + 1, n2 − l2)

22r
Ft

(
l1 + l2 − l

2

)

×
{

β (2l − 1)!!£m2−m1
l (βR) − 1√

2β

∑l+1

q=1
g−l−1

l+1,qχ
m2−m1
q−l−1,l (β, R)

−
∑n2−r−t

ν=1

(
β−1/2

22v+1/2

∑v−l

q=1
gl
v−l,qχ

m2−m1
q+l,l (β, R)

)}
. (33)

Using the expansions equations (28), (29) into equation (25), we rewrite
the overlap integrals between STOs and ISH as the product STOs, Gegenbauer
coefficients and hypergeometric functions in terms of infinite series
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Zn2l2m2
l1m1

(α, β; R)= π (−1)l1 βl1−2

(2l1 − 1)!!αl1+1 Fl2 (n2)
√

Fn2 (2n2)

∑lmax

l=lmin

(2) 〈l2m2 |l1m1| lm2−m1〉

×
∑E((n2−l2)/2)

r=0

∑(l1+l2−l)/2

t=0
(−1)l+r+t ar (l2 + 1, n2 − l2) Ft

(
l1 + l2 − l

2

)

×
∑∞

ν=0

1

22v−2t

∑k−l

q=1
gl

k−l,qχ
m2−m1
q+l,l (β, R) (34)

= π(−1)l1 2n2+5/4βl1−2

(2l1 − 1)!!αl1+1 Fl2 (n2)
√

Fn2 (2n2)

∑lmax

l=lmin

(2) 〈l2m2 |l1m1| lm2 − m1〉

×
∑E(n2−l2/2)

r=0

∑(l1+l2−l/2)

t=0
(−1)l+r+t Ft

(
l1 + l2 − l

2

)
ar (l2 + 1, n2 − l2)

×
∑∞

ν=0 2 F1 (−ν, n2 − r − t + 1; n2 − r − t + 2; 2)
Fν (n2 − r − t + ν + 1)

2r−t+2v+l/2

×
∑k−l

q=1
gl

k−l,qχ
m2−m1
q+l,l

(
β
/√

2, R
)

, (35)

where k = n2 − r − t + v + 1.

5. Results and discussions

In this article various mathematical properties of ISHs and Fourier trans-
forms of STOs were analyzed and the relevance of these properties in overlap
integrals was discussed. For that purpose, we first derived Fourier transforms of
STOs and ISHs. And then, we analyzed the connection between STOs and ISHs.
The standard way of computing the Fourier transform of an irreducible spher-
ical tensor consists in using the Rayleigh expansion of a plane wave in terms
of spherical Bessel functions and spherical harmonics. Due to orthonormality of
the spherical harmonics the angular integration is then trivial and only radial
integral involving a spherical Bessel function remains to be alone. However, the
evaluation of the integrals involving spherical Bessel functions is usually not all
easy and in some cases even impossible.

Overlap integrals with different screening parameters are much more com-
plicated than overlap integrals with the same screening parameters. In the case
of overlap integrals with the different screening parameters, two different expres-
sions are available one by a finite numbers of terms involving linear combina-
tions of STOs and ISHs and one by infinite series in terms of only STOs.

The important approach for the evaluation of overlap integrals is based
upon the use of elliptical coordinates [21]. Elliptical or spherical coordinates
leads in difficult mathematical structures. Usually, completely different special
and auxiliary functions occur. Therefore, it is very hard to compare the effi-
ciency and feasibility of formulas. In our opinion, an overlap integral can be
transformed into a one-center momentum space integral by seen equations (23)
and (24). This representation of the overlap integral makes it is possible to
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obtain a separation of the integration variables without using an addition the-
orem. For overlap integrals over STOs this method has been applied by many
authors [22]. However, we could be shown that the overlap integrals over STOs
can be represented quite conveniently in terms of STOs again; in this article
and Ref. [12]. As can be seen from equations (33)–(35), final result for the over-
lap integrals between STOs and ISHs with different screening parameters are
expressed in terms of binomial, Gaunt, and Gegenbauer coefficients.

The algorithm of calculation of overlap integrals between STOs and ISHs has
been implemented in a computer program, written in Mathematica 5.0, and per-
formed on P. IV 2.8 GHz computer for a moderate range of physically significant
values of atomic orbital parameters. In table 1, we present results of our calcu-
lation of overlap integrals obtained from equation (33). As can be seen equation
(33), in order to calculate overlap integrals using Gegenbauer, Gaunt coefficients,
ISHs, and STOs are required. The coefficients and ISHs were calculated using
the method in Refs. [23,24], respectively. The accuracy of overlap integrals was
checked for various quantum numbers using following expression;

Zn2l2m2
l1m1

(α, β; R) = limα→0

{ √
(2n1)!

(2α)n1+1/2
Sn2l2m2

n1l1m1
(α, β; R)

}∣∣∣∣
n1=−l1

(36)

= limα→0

{
(2α)−n1−1/2

4β RY 0
1 (θ, 0)

√
3 (2n1)!

π
limK→∞

∑K

n′′=l1+1

{(
1 − ε

1 + ε

)1/2

×
{

An1l1m1 f l1+1
n1+1n′′ (K , ε) Sn2l2m2

n′′l1+1m1
(β, β; R)

+ Bn1l1m1 f l1−1
n1+1n′′ (K , ε) Sn2l2m2

n′′l1−1m1
(β, β; R)

}

−
(

1 + ε

1 − ε

)1/2 {
An2l2m2 f l1

n1n′′ (K , ε) Sn2+1l2+1m2
n′′l1m1

(β, β; R)

+ Bn2l2m2 f l1
n1n′′ (K , ε) Sn2+1l2−1m2

n′′l1m1
(β, β; R)

}}}∣∣∣∣∣
n1=−l1

. (37)

Equation (37) is obtained from equation (18) of Ref. [12-(f)] and equations
(1)–(4) of Ref. [24]. In equation (37), we use following definitions;

Anlm =
[
(2n + 1) (2n + 2)

(l − m + 1) (l + m + 1)

(2l + 1) (2l + 3)

]1/2

,

Bnlm =
[
(2n + 1) (2n + 2)

(l − m) (l + m)

(2l + 1) (2l − 1)

]1/2

, (38)

ε = α − β

α + β
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and Sn2l2m2
n1l1m1

(α, β; R) is overlap integrals between STOs. In equation (37) coeffi-

cients f l
nn′ have been defined in Ref. [24]. In this comparison perfect matching

is obtained. The accuracy and CPU time of computer results are satisfactory.
Therefore, this algorithm provides a rapid and sufficiently accurate method for the
calculation of the multicenter molecular integrals in the Hartree–Fock–Roothaan
approximation based on the translation formulas for STOs and ISHs for arbitrary
values of quantum numbers, internuclear distances and screening constants and
location of STOs and ISHs. This causes us the comment that our program should
be efficiently accurate for all practical purposes.

Appendix A

We can establish the following formula for the second integrals in equation
(30). Because of orthonormality of the spherical harmonics and Rayleigh expan-
sion of plane wave in terms of spherical Bessel functions and spherical harmon-
ics it follows immediately, equation (30), is again an irreducible spherical tensor,

Y m
l (θ, φ) Gl

ν (β, R) =
∫

e−iR.p Sm
l (p)

(
β2 + p2

)ν+1
d3 p. (A1)

The radial integral, Gl
ν (β, R), can be calculated with help of the relation-

ship:

Gl
ν (β, R) = 4π (−i)l

∫ ∞

0

pl+2 jl (pR)
(
β2 + p2

)ν+1
dp. (A2)

The result can be derived in terms of the Bessel function of the first kind
by using equation (10)

Gl
ν (β, R) = 2 (−i)l

√
2π

R

∫ ∞

0

pl+3/2 Jl+1/2 (pR)
(
β2 + p2

)ν+1
dp. (A3)

This integral can be proved with the help of Ref. [20]

∫ ∞

0

pl+3/2 Jl+1/2 (pR)
(
β2 + p2

)ν+1
dp = Rνβl+1/2−ν

2νν! Kl+1/2−ν (β R) . (A4)

If Kn (x) stands for the modified Bessel function of second kind, the
reduced Bessel functions is defined by Gradshteyn and Ryzhik [20]

k̂n (x) = (2/π)1/2 xn Kn (x) . (A5)
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The reduced Bessel functions can be represented by an exponential multi-
plied by a polynomial [19]

k̂n−1/2 (x) = e−x
∑n

q=1

(2n − q − 1)!
(q − 1)! (2n − 2q)!! xq−1. (A6)

Now, the integral given by equation (A1) can be computed quite easily with
help of equations (A4)–(A6);

Y m
l (θ, φ) Gl

ν (β, R) = (−i)lπ2 Rlα2l−2ν+1

2ν−1ν! k̂ν−l−1/2 (αR) Y m
l (θ, φ)

= (−i)lπ2 αl−2ν−1/2

22ν−1/2

∑ν−l

t=0
gl
ν−l,tχ

m
t+l,l (α, R), (A7)

where

gl
µ,t = t

2µ − t

Ft (µ) Fµ (2µ − t)

Fµ−t (µ + l)

√
Ft+l (2 (t + l)). (A8)
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